Sliding mode control in the presence of input delay: A singular perturbation approach
نویسندگان
چکیده
Sliding Mode Control (SMC) in the presence of small, unavoidable input delay as may be present in controller implementation is studied. Linear systems with bounded matched disturbances and uncertain systemmatrices are considered,where input delay in the SMCwill produce oscillations or potentially even unbounded solutions.Without a priori knowledge of the bounds on the state-dependent terms as required by existing methods, the design objective is to achieve ultimate boundedness of the closed-loop system with a bound proportional to the delay and disturbance bounds. This is a non-trivial problem because the relay gain depends on the state bound, whereas the latter bound depends on the relay gain. A controller with linear gain proportional to the scalar 1 μ is proposed, which for small enoughμ > 0 produces a closed-loop singularly perturbed system and yields the desired ultimate bound. A constructive LinearMatrix Inequality (LMI)-based solution for evaluation of both the design parameters and the ultimate bound is derived. The superiority of the proposed control over existingmethodologies that ignore input delay within the design is demonstrated through an example. Crown Copyright© 2012 Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کاملA Novel Robust Adaptive Trajectory Tracking in Robot Manipulators
In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...
متن کاملA Novel Approach to Designing of Chattering-Free Sliding-Mode Control in Second-Order Discrete-Time Systems
In this paper, a chattering-free sliding-mode control is mainly proposed in a second-order discrete-time system. For achieving this purpose, firstly, a suitable control law would be derived by using the discrete-time Lyapunov stability theory and the sliding-mode concept. Then the input constraint is taken into account as a saturation function in the proposed control law. In order to guarantee ...
متن کاملFuzzy Sliding Mode for Spacecraft Formation Control in Eccentric Orbits
The problem of relative motion control for spacecraft formation flying in eccentric orbits is considered in this paper. Due to the presence of nonlinear dynamics and external disturbances, a robust fuzzy sliding mode controller is developed. The slopes of sliding surfaces of the conventional sliding mode controller are tuned according to error states using a fuzzy logic and reach the pre-define...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 48 شماره
صفحات -
تاریخ انتشار 2012